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ABSTRACT

ON THE RADIUS OF CONVERGENCE OF
INTERCONNECTED ANALYTIC NONLINEAR SYSTEMS

Makhin Thitsa

Old Dominion University, 2011

Director: Dr. W. Steven Gray
A complete analysis is presented of the radii of convergence of the parallel, prod-
uct, cascade and unity feedback interconnections of analytic nonlinear input-output
systems represented as Fliess operators. Such operafors are described by convergent
functional series, indexed by words over a noncommutative alphabet. Their gener-
ating series are therefore specified in terms of noncommutative formal power serics,
Given growth conditions on the coefficients of the generating series for the compo-
nent systems, the radius of convergence of each interconnected system is computed
assuming the component systems are either all locally convergent or all globally con-
vergent. In the process of deriving the radius of convergence for the unity feedback
connection, it is shown definitively that local convergence is preserved under unity

feedback. This had been an open question in the literature.
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CHAPTER 1

INTRODUCTION

This chapter provides the motivation for the research described in this disserta-
tion. Subsequently, the problem statement is presented followed by a chapter-by-
chapter outline of the document.

1.1 MOTIVATION

Most complex systems found in applications can be viewed as a collection of
interconnected subsystems. Generally, an interconnection is said to be well-posed
when the output signal and every internal signal is uniquely defined on some interval
[to,ta + T), T > 0, when the inputs are, for example, Lebesgue measurable functions
on the same interval. Sometimes additional properties like causality, continuity and
regularity are also included as part of the definition of well-posedness [5, 34]. If
one or more subsystems is nonlinear, a variety of sufficient conditions are available
to ensure that an interconnected system is well-posed [1,2,31]. One example for
feedback systems is the incremental small gain theorem, which imposes a bound on
the L, loop gain [5].

This dissertation focuses on a class of analytic nonlinear input-output sys-
tems known as Fliess operators [14-16]. Such operators are described by func-
tional series indexed by the set of words X* over the noncommutative alphabet
X = {zp,21,...2n}. Their generating series are, therefore, specified in terms of
noncommutative formal power series, the set of which is denoted by R*{({X}). (The
set of all formal power series over a commutative alphabet X is denoted by R®[[X]].)
A formal power series ¢ is a mapping ¢ : X* — Rf. The value of c at 5 € X* is
denoted by {c, 5}, and is called the coefficient of 5 in ¢. Specifically, one can formally
associate with any scries ¢ € R¢{{X)) a causal m-input, £-output operator, F,, in
the following manner. Let p > 1 and ty < ¢; be given. For a measurable function
u: [to, 1] — R™, define |ju]l, = max{|lu|l, : 1 < ¢ < m}, where ||u|, is the usual
Ly-norm for a measurable real-valued function, u;, defined on [tg,#1). Let L;"'[tg, t]
denote the set of all measurable functions defined on [, 1] having a finite || - |}, norm
and B(R)[to,t1] := {u € L}fto,ta] = |lufl, < R}, Assume Clto,t1] is the subset



of continuous functions in LT*[tg,¢1]. Define recursively for each 7 € X* the map
By LT to, t1] — C[to, t1] by setting Fy[u] = 1 and letting

Eplu](t, o) = ] () Eqlu)(r, to) d,

where x; € X, §j € X*, and ug = 1. The input-output operator corresponding to ¢ is
the Fliess operator

Folu](t) = > (e,n) Ey[uf(t, to)-

neEX"

If there exist real numbers K., M. > 0 such that
(e, m)| < KMl ¥y e X, (1.1.1)

where || denotes the length of the word #, the series ¢ is said to be locally convergent,
and the set of all locally convergent formal power series is denoted by RE - ((X}).
(Here, |z| := max;|z| when z € R%) In this case, F, constitutes a well defined
mapping from BJ*(R)[to, to+ T into BE(S)[ta, to+ T for sufficiently small B, T > 0,
where the numbers p, g € [1, o0] are conjugate exponents, i.e., 1/p+1/g=1 20]. In

particular, when p = 1, the series defining y = F.[u] converges if

max{R, T} < (1.1.2}

1
M.(1+m}

6,8]. Let m : REL{((X)) — RY U {0} take each nonzero series ¢ to the smallest
possible geometric growth constant M, satisfying (1.1.1). In this case, R} {(X})
can be partitioned into equivalence classes, and the number 1/{M.(1 + m}} will be
referred to as the radius of convergence for the class 771(M,). This is in contrast to
the usual situation where a radius of convergence is assigned to individual series [25].
In practice, it is not difficult to estimate the minimal M, for many series, in which
case, the radius of convergence for 7= (M,) provides an easily computed lower bound
for the radius of convergence of ¢ in the usual sense. Finally, given any measurahle
function  on [tg, 00, let u[ty, t1] denotes its restriction to the interval [ty, t]. Defince

the extended space L7 (to) as
L::Le(tg) = {IL : [t{), OO) — R™: u{ﬁo,gl]l = L;n[fg, fl],Vil = (fg, DO)}
When ¢ satisfics the more stringent growth condition

(e, m)| < KM, Vo e X*, (1.1.3)
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Fig. 1: The parallel connection of two Fliess operators

Fig. 2: The product connection of two Fliess operators

the scries ¢ defines an operator from the extended space L7, () into Cltg, 0o} [20].
Such generating series are called globally convergent series, and the set of all such
series is denoted by R {((X)).

Given two input-output systems F, and Fy, there are four fundamental system
interconnections normally encountered in applications : the parallel connection, the
product. connection, the cascade connection and the feedback connection. For any
admissible input, %, the parallel and product connections as shown in Figures 1 and

2 are described, respectively, by
y = Filu] + Fiu], y= F.[u]lFyu].
The cascade connection depicted in Figure 3 is equivalent to
y = F.[Falul].

Finally, the feedback connection as shown in Figure 4 is described by the solution y
to the feedback equation
y = Felu+ Faly]].



Fig. 3: The cascade connection of two Fliess operators

F,

Fig. 4: The feedback connection of two Fliess aperators

It is known that the parallel, product and cascade connection of two locally con-
vergent Fliess operators always yields another locally convergent Fliess operator {19].
The feedback connection is known to be well-posed in a certain scnse, but it is not
known at present whether it has a locally convergent, Fliess operator representation.
An important exception to this state of affairs is the self-excited case (u = 0) [19]. In
addition, global convergence is preserved by the parallel and product connections but
not in general by the cascade or feedback connection [18]. Little else is known about
the subject. In particular, there is no proof that the unity feedback interconnection
(that is, when Fy is replaced by the identity map I) preserves local convergence.
Furthermore, the radius of convergence is not known for any of the four intercon-
nections. As discussed in later chapters, the parallel connection is straightforward,
and lower bounds are available in [32] for the product connection and in [19] {or the
cascade and self-excited feedback connections. However, these bounds are in general
very conservative. Hence, the primary goal of this dissertation is to address these

specific gaps in the literature.



1.2 PROBLEM STATEMENT

The specific goals of this dissertation are to:

1. Compute the radii of convergence of the parallel, product, cascade and unity
feedback interconnections of input-output systems represented by Fliess oper-
ators. The cases where the components are either all locally convergent or all

globally convergent will be considered individually.
2. Show that the unity feedback connection preserves local convergence.

3. Provide for each interconnection specific examples under which the radius of

convergence is achieved.

1.3 DISSERTATION OUTLINE

The remainder of this dissertation is organized as follows. In Chapter 2, the
mathematical tools used to solve the main problems are presented. First, the basic
theory of formal power serics iy introduced in the context of formal language theory.
Then the hasic interconnection theory for Fliess operators is reviewed. This includes
the definitions of the composition and feedback products of formal power geries. The
goal of Chapter 3 is to calculate the radii of convergence for the parallel, product and
cascade connection of two convergent Flicss operators. The case where the operators
are locally convergent is considered first, followed by the globally convergent case,
In Chapter 4, the radius of convergence is determined for the feedback connection.
First, self-excited feedback systems are addressed. Subsequently, the analysis for the
unity feedback case is presented. Again, separate analyses are done for cloged-loop
systems having components with locally convergent genecrating series and globally
convergent generating series. Chapter 5 summarizes the conclusions and describes

future work that could be done in this area.



CHAPTER 2

MATHEMATICAL PRELIMINARIES

The generating series of Fliess operators are specified by noncommutative formal
power series. Therefore, this chapter presents some basic definitions concerning these
objects and describes a set of key operations one can apply to them. Specifically,
connecting two Flicss operators in the parallel or product configuration is equivalent
to adding or shuffling the corresponding generating series, respectively. Connecting
them in a cascade or feedback fashion is equivalent to perforining the composition
product or feedback product, respectively, on the generating series. But first some

notation and terminology from formal language theory is introduced.

2.1 NOTATION AND TERMINOLOGY FOR FORMAL POWER
SERIES

A finite nonempty set of noncommuting symbols X = {zg,%1,...,Zm} is called
an alphabet. Fach element of X is called a lefier, and any finite sequence of letters
from X, n = x,, - - x,,, is called a word over X. The length of 7, |n|, is the number
of letters in 5, while ||, is the number of times the letter x, appears in n. The set
of all words with length k will be denoted by X*. Joining two words £, v € X* from
end to end to form the new word n = £v is called catenation. The power »* means
catenating 7 with itself + times. Furthermore, the empty word, §, is an identity
clement for catenation, that is,

O =nd =.

The empty word @ has length zero. The set of all words including the empty word
will be denoted by X™*. Since catenation is associative, X* forms a monoid under

this product.

Definition 2.1.1. Formal Power Series
Given an alphabet X = {xg,%1,...,Zm}, & formal power series ¢ is any mapping of
the form

c: X* = R



The image of a word n € X™ under cis denoted by (¢, n) and is called the coefficient of
n in ¢. Typically, ¢ is represented as the formal sum ¢ = Zne x+(¢, m)1. The collection
of all formal power series over X is denoted by R‘((X}}. The notation ¢ < d means
that the component serics satisfy (¢,.n) < (d,,n) forallp € X* and ¢ = 1,2,... 1L
When (c.n7) € R, |(c, n)] == max, |(c,, )] The definition of the catenation product
can be extended to R{{X}) as follows.

Definition 2.1.2. Catenation Product
The catenation product of two series ¢, d € R{{X)) is

(cd,n) = 3 (€)(d ), ¥n € X"

[ ok o
H—Eer

R{{X}) forms an associative R-algebra under the catenation product with identity

clement 1.

Definition 2.1.3. The Sum and Scalar Product
The sum of two series ¢, d € RE((X)) is defined as

(c+d,n) = (e,n) +{d.n), ¥p € X,
and the scalar product is given by
(ac,n) = ale,n), Ve X", a € R.

With these definitions, RY{X)} admits an R-vector space structure. The following
theorem relates the sum of the generating series to the parallel connection of the

corresponding Fliess operators.

Theorem 2.1.1. [14] Gwen Fless operators F, and Fy, where ¢,d € R: (X)), the

parallel connection F, + Fy has the generating series ¢+ d. That s,
Fc + Fd = Fc—-—d-
The local convergence s preserved under summation.

The following set of definitions will be used throughout the dissertation.

Definition 2.1.4. Left-Shift Operator
Given any £ € X*, the corresponding left-shift operator on X* is defined as

£ X RIX))



I} : f — '3
5_1(??):{ 7 ifn=2_¢n

0 : otherwise.

This definition can be extended linearly as follows For any ¢ € R¥{{X)),

£7'e) =D (enE ).
neEX*
In addition, £74(-) denotes the left-shift operator £71(+) applied ¢ times.

Definition 2.1.5. Support of a Formal Power Series

The support of a formal power series ¢ € R¥{({X)) 15 defined as

supp(c) :==4{n € X* : (e.n} # 0}.

Definition 2.1.6. Order of a Formal Power Series

The order of a formal power series ¢ € R¥({X}) 1s defined as

ord(c) = { min{ln| : n € Supp(c)} L c#£0

00 o= 10.

The following theorem will be essential in computing the radius of convergence for a

given interconnection.

Theorem 2.1.2. [35] Let f(z) = 3, 5,0n2" be analytic in some neighborhood of
the orgin in the complex plane. Su;opos_e zg # 0 25 @ singulardty of f(2) having the
smallest modulus. Gwen any € > 0, there exists an wnteger N > 0 such that for all
n >N,

[an] < (1/]20] + €)™ .

Furthermore, for infinetely many n,
lan| > (1/[z0 — €)".

The following definition will be used extensively in the analysis of feedback systems
in Chapter 4.

Definition 2.1.7. Rcalization of a Fliess Operator
A Fliess operator F. defined on B*(R)[ts, o + T is said to be realized by a state



space realization when there exists a systern of n analytic differcntial equations and

£ output equations

z = gg(z)—f—th(z)u%, 2(ty) = 2o {2.1.1)
v = Az, (2.1.2)

where each g, is an analytic vector field on some neighborhood W of z, and A
is an analytic function on W, such that {2.1.1) has a well defined solution z(t),
t € [to.to + 7] on W for any given input u € Bl*(R)[ty, o + T, and

Fu(t) = h(=(t)), t€ [ta,to+T]
15,20, 23].

Let G = {go: g1, ---: gm ). It is well known that when F, is realizable, the generating

series ¢ is related to the realization (G, h, 2y} by
(c.n) = Ly h(z), ¥ne X7, (2.1.3)
where the iterated Lie derwafives are defined by
Loh=1Lg - Lg h, n=a 2, € X7

with L, : h+— 0h/0z g, and Lgh = N [15,16,23]. The analyticity of G and 4 ensures

that ¢ is locally convergent [30].

2.2 SHUFFLE PRODUCT AND THE PRODUCT CONNECTION

The central definition in this section is given below [3,14, 28].

Definition 2.2.1. Shuffle Product
The shuffle product of two words n,& € X* is defined as the R-bilinear mapping

uniquely specified by the recursive definition
nwé = (&7)w(@¢)
= {1 (3"35{)) + ‘BJ((-TW’) w &),
where n =z, £ = 2,8 and v ¥ = 0 v = v, Vv € X*. This definition is extended
linearly to any two series ¢, d € R{{X)) by letting

cuwd = Z (C??)(df)"?mf

wEeX*
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Given two series ¢,d € R¥({X)), the shuffle product ¢w d is defined componentwise,
ie., the #th component of cuid is (cwd.v), = (¢ wd,v) for any v € X* and
= 1,2,....4 RY(X)) forms a commutative and associative R-algebra under the
shuffie product. For any ¢ € R*{{X)), the power ¢ * is equivalent to shuffing the

geries ¢ with itself & times and ¢'+Y

= 1. The following properties and identities
of shuffle product will be used extensively in the analysis presented in subsequent

chapters.
Lemma 2.2.1. [82] The follounng identitzes hold:

1. Foranyrc X, 25k =k 25

|2}

2. (Cl.ud,u)zz Z (Cvn)(dvgj(n'uéav)'

FPEXNT
Ecxllll—l
L
3. E (??I_I_Ig.}y):(lt|),3:0,1,...,|V|,
neXxt
cexle -

Theorem 2.2.1. [8] The lefi-shaift operator acts as a derwation on the shuffie prod-
uct, r.e., for all c,d € R{{(X}) and any x;, € X

g (ewd) = 2yt (e) wd + e wx 1 (d).

The following theorem relates the shuffle product of the generating series to the

product connection of the corresponding Fliess operators.

Theorem 2.2.2. [1/,52] Gwen Fhess operators F. and Fy, where ¢, d € R o ({X)),

the product connection F.F; has generating seres cu d. That s,
FoFy=Feua

Furthermore, local convergence 1s preserved under the shuffle product.

2.3 COMPOSITION PRODUCT AND THE CASCADE
CONNECTION

The composition product can be traced back to the work of Ferfera in {9,10]. The

interpretation given below first appeared in [17, 18]
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Definition 2.3.1. Composition Product
Let d € R™{{X?}) and define the family of mappings

Dy, : RUX)) = RYU(X)) = e > a0(dy we),

where i = 0,1,...,m and dy := 1. Assume Dy is the identity map on R{{X}}. Such
maps can be composed in an obvious way so that Dy, = D; D, provides an R-
algebra which is isomorphic to the usual R-algebra on R{{X}) under the catenation
product. The compositron product of a word n € X* and a series d € R™{(X)) is
defined as

(m"’-kx%k-l.”xtl)od:D D D-’-“vl(l) :Dn(l)‘
S —

Ty T Trey
"

For any ¢ € R*{{X}) the definition is extended linearly as

cod= Z (e.n) D,(1).

nEX”
From this definition, it is clear that the cormposition product is linear in its left
argument, i.c., (ac+ 3d) oe = afcoe) + 3{d o e}, where o, 8 € R, ¢,d € RI{(X)),
and ¢ € R™{{X}), It is sometimes useful to express the composition product in the

following alternative ways:
(i) An arbitrary word € X* can be written as

1 n1 RO
cL Ty Ty X,

n=ag" T, Ty
where i, # O for j =1,... &, and ng,ny,...,n; > 0. Then it follows that

nod= 3:3”1 [dik _u.i':gk_lH [dik_1 W _$3-1+1 [d,, wxg’]-- H .

(ii) For any word € X*, one can uniquely associate a sct of right factors

{m0,m,. ... 7} by the iteration
Tl = Fg Ty o= Tg%s dy41 £ 0,
so that n = g with k = || — |n]e,. Then, nod = m o d, where
Mas 0 d =g fd, o (ny 0 d)],

70

and m o d = x3°.
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The following lemma states some important properties of the composition product.

Lemma 2.3.1. 9,19/ For ¢,d € RY{(X}) and e € R™{{X}) the following wdentiiies
hold:

1. 0oc=0.
2. ¢ol = Z(c, xh g
nz

3 {cwd)ee={coe)w(doec).

An important observation is that the composition product induces a contraction on

R™{{X}}. To see this precisely, consider first the following definition.

Definition 2.3.2. Ultrametric Space
Given a set S, a function 6 : § x & — R is called an wlirametric if 1t satisfies the

following properties for all s, &', s € S:
1. 8(s,¢") >0
2. 4(s,4") = 01if and only ifs = &
3. 4(s,8") = 8(¢, 5)
4. &(s,¢") < max{d(s, "), d(s',8"}}.

The pair (S, 4} is referred to as an ultrametric space. It is easily shown that every

ultrametric space is a metric space.

Theorem 2.3.1. [3] The R-vector space RE((X)) unth the mapping

dast COREOON x RYXD))Y - R

{¢,d} — gordle—d)

s an wlirametric space for any real number 0 < ¢ < 1.

Definition 2.3.3. Contractive Mapping
Let (S, 8) be a metric space. A mapping T : § — 5 is called a contractive mapping

if there exists a rcal number 0 < @ < 1 such that

8(T(s), T{s)) < ad(s,s), s,¢€8.
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Given any mapping 7, a point s* € S is said to be a fized powni if T(s*) = s*. The

[ollowing theorem gives a condition under which a fixed point exists and is unique.

Theorem 2.3.2. [24] Let (S,d) be a complete nonempty metric space. Then every

contractive napping T : 5 — § has precisely one fived pomt in S.

Theorem 2.3.3. [19] For any ¢ € R™{{X)}, the mapping ¢ — cod 15 a contractive

map on R™{{X)) mn the sltrametric sense.

The following theoremn states that local convergence is preserved under composi-

t10mn.

Theorem 2.3.4. [19] Suppose ¢ € RE (X)) and d € R {(X)) with growth con-
stants K., M, > 0 and Ky, My > 0, respectwely. Then cod € RS {(X)) Spearfically,

l{cod,v)| < K ({¢p(mKy) + DM |v] + 1)), Yve X,

where &(x) = /2 4+ J2?/4+z end M = max{M,, My}. (Here ¢(1} = ¢, =
(14 v5)/2, the golden ratio. See Table 1 for some specific values of p(mKg) +1.)

TABLE 1. Somc specific valucs of ¢(miy) + 1

mKg | ¢(mEy)+1

0 1
] | ~/mKy+1
1/2 2

1 qbg"‘l:(ff’g
> 1 %mKd

+00 “+00

In light of (1.1 2) and the theorern above, a lower bound on the radius of conver-
gence for cod is 1/{¢(mKy) + 1)M(1 +m). To date no example has been presented
for which the radius of convergence corresponds exactly to this bound. Thus, it is
believed that this result is conservative. In addition, it can be shown by a simple coun-

terexample that global convergence is not always preserved under composition [7,9].
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However, if ¢ and d are globally convergent, one would expect this stronger property
to produce a correspondingly larger radius of convergence for c o d. Finally, in much
of the work to follow, the subset of R*{{X)} described below will be useful.

Definition 2.3.4. [13,14] Exchangeable Series
A series ¢ € RE((X)) is said to be exchangeable if for arbitrary n,£ € X*

|n|1,:|£r,’?:0]"m = (C'-??):(C'lg)'

Theorem 2.3.5. If ¢ € R¥{{X)) 1s an exchangeable series and d € R™{{X)} s

arbitrary then the composibion product can be written wn the form

cod= e rgd  xmy D)W - w DI (1),
{ T i Trn

k=0 rg. a0
mT— +rm=*k

Proof: For fixed r, > 0,4 =0,1,...,m define the polynomial

Using the identity
X(To,?"l, Ca ,T"m) = ﬁ.."guu_l.’l,‘? IR i

[6], observe that

cod = Z Z((?,n)nod

k=0 neX*k

- i Z (C:‘rgﬂa---,iﬁj;f)X(?‘o}...,T'm)od

k=0 rg, .m0
o+ Trm—k

= Z Z (c,zg’, .., 2z od)w - w (x77 o d)

k=0 L Tm =0
s Arm=k

e
= > Y (eap,..mp)DR(w - wD(1).
k=0 rp. mm>0

T+ +rm-k

The following theorem relates the composition product of the generating series to

the cascade connection of the corresponding Flicss operators.
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Theorem 2.3.6. [9, 10,19] Gwen Fliess operators F, and Fy, where ¢ € R ({X))
and d € R (X)), the cascade comnection F, o Fy has generating series c o d, that
15,

F.o Fy= Feoq.

Furthermore, local convergence s preserved under the compositron product.

2.4 FEEDBACK PRODUCT AND THE FEEDBACK CONNECTION

Consider two Fliess operators interconnected to form a feedback system as shown

in Figure 4. The output y must satisfy the feedback eguation
y = Flu+ Fyly]]

for every admissible input «. It was shown in [19,21] that there always exists a
generating series e so that y = F,[u]. In which case, the feedback equation becomes

equivalent to
Fi[u] = Felu+ Faoe[ul]. (2.4.1)

The feedback product of ¢ and d is thus defined as ¢@d = e. F, is the composition
of two operators, namely, F,. and I + Fy.. The latter is not realizable by a Flicss
operator due to the dwrect feed terin I. To compensate for the presence of this term

the following definition of Lthe rmodified composition product is needed.

Definition 2.4.1. Modified Composition Product
The modified composition product of ¢ € RY((X)) and d € R™{(X}) is defined as

Cad = Z (C‘ 5‘?) DT}'(]‘)'J
nex*
where
Dy, RUXY = RUXD) : e ze + zo(d, we)

with dg == (.
Alternatively, the modified composition product can be expressed as follows. For any
n € X* and d € R™{(X})

7 T =X

nod = < 2Bz, (yed) + o Hd, w (5'3d)) : p=xlzy,n € X*
i #£ 0,
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where n > 0. For ¢ € R¢({X)) and d € R™{{X)), the definition is extended linearly

as

cod = Z (e, minad.

nex*

Theorem 2.4.1. [19] For any ¢ € RY{(X)) and d € R™{{X)}, 1t follows that
Faglu] = F, [u+ Fylu]].

The feedback equation (2.4.1} can be written in terms of the modified composition
product as
Fe [u] = Fca(doe] [Li]

It was shown in [27, Corollary 2.2] that if F, = Fy on any BJ*(R)[tg,to + T then

¢ =d. A similar uniqueness result for the formal case is described in [21]. Therefore,
e=cé{doe).

Theorem 2.4.2. [19,26] For any ¢ € R™{{X}), the mapping d > ¢&d 15 a contrac-
tiwe map on R™{(X)}.

Theorem 2.4.3. [21] For any ¢, d € R™{{X)), it follows that :

1. e 15 the unigue fizred pownt of the confractwe iterated map

S:e(k) s e(k+1) = cd(d o e(k)).

2. cQd = e salisfies the fired pownt equaiion

e=co(doe). (2.4.2)

In the case of a unity feedback system, where the operator Fy in the feedback
path is replaced by I, equation {2.4.2) reduces to € = cde. In the self-excited case,
i.e., when u=0, equation {2.4.2) becomes € = {cod)oe. Thus, when cod is redefined
as ¢, it reduces further to e = ¢ o e. Moreover, since a self-excited feedback system
can be described by Feas0] = Fleageolul, the generating series ¢ = (c@d) o 0. Thus,
e € R™[[Xy]], where Xy = {zg}. The next theorem states that local convergence of

a sclf-excited unity feedback system is preserved.
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Theorem 2.4.4. [19] Let ¢ € RT-{({X}) weith growth constants K. > 1 and M, > 0.
If e € R™[[Xy]] satisfies e = coe then

(e, 3| < Koy (mE2+6,) + DM suml, n >0,

where so = 1/dg and 5,11 = B(C,) =3 1o (1) Cr. 2.€., Sny1, n > 0 s the binomaal

transformation of the Catalan sequence.

TABLE 2: Selected sequences from the OEIS concerning the local convergence of the
feedback product in the self-excited case

scquence ‘ QOFEIS number n=1012,... ‘
C, AOD0108 | 1,1,2,5, 14,42, 132,429, 1430, . ..
St A007317 | 1,2,5,15,51,188, 731, 2950, . ..

The Catalan sequence is a sequence of natural numbers which appears in many

counting problems. The n-th Catalan number is described as

1 2n.
cﬂ_n—l(n)'

The sequence 8,41, 7 > 0 1s sequence number AQ007317 in the Online Encyelopedia
of Integer Sequences (OEIS) [29] Sec Table 2 for the first few entries of both O,
7 > 0 and 8,41, n > 0. The asymptotic behavior of s,,,, n > 0 is kuown to be
\/g L
~ 5
8/ nd

[22]. Therefore, for the single-input, single-output case

Sn

(e, af)] < (BK)M)"nl, >0,

where 3(K.) = K (10 + 5¢,4) + 5 for K. > 1. For a self-excited unity feedback
system, it follows from (1.1.2) with R = m = 0 that F,[0] is guaranteed to converge
on at least the interval [0,1/8(K.)M,). But again no example has been presented
to date for which this interval corresponds exactly to the interval of convergence.
Little else is known concerning the local convergence of the closed-loop system, but
as in the cascade connection, global convergence is known not to be preserved under
feedback [9, 18]. However, a version of Theorem 2.4.4 tailored to the case where
¢ € RE{{X)) should intuitively yield a larger interval of convergence for the closed-
loop system. Most importantly, when the input is nonzero, the guestion of whether

or not the unity feedback system preserves local convergence remains open.
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CHAPTER 3

THE RADIUS OF CONVERGENCE OF THE
NONRECURSIVE CONNECTIONS (PARALLEL,
PRODUCT AND CASCADE)

The goal of this chapter is to calculate the radius of convergence of the parallel,
product and cascade connections of two convergent Fliess operators. The case where
the component operators are locally convergent 18 considered first, followed by the

globally convergent case.

3.1 THE PARALLEL CONNECTION

3.1.1 Local Convergence

The analysis beging with the parallel connection shown in Figure 1, which can
be considered as the simplest of all the interconnections. The following theorem is a

prerequisite for proving the main theorem of this section.

Theorem 3.1.1. Let X = {zo,21,...,%m}. Let &,d € RE (X)), where each com-
ponent of (2,7) and (d,n) s Kcz’hfiﬂ1|?;[!, n e X* with K., M, > 0 and K,,gﬁ/ffljnﬂ,
n € X* unth Kg, Mg > 0, respectwely. If b= ¢+ d, then the sequence (b, zF), k > 0

has the exponential generating function

i Lk
Flaa) = ) (bnat) 7
k=0
—_ Kc + Kd
1-— ﬂffc.ﬁ?o 1— ¢Md$0
foranye = 1,2,...,¢. Moreover, the smallest possible geometric growth constant for
ET i5

My, = max{M,, My}.

Proof: There is no loss of generality in assurning £ = 1. Observe for any » € X,
n > 0 that

(bv) = Ev)+dv)
(Kcﬂ/le + KdMé") nl.
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Furthermore, (b,v) = (b, 2%), n > 0. The key idea is that f(¢) is the zero-input

response of F3. Specifically,

1) = Yookl = Bl
= F0)+ Fio]

=] o0
= > KM Y KM
k=0 k=0
Ky K,

YRR Vs

(3.1.1)

Since f is analytic at the origin, by Theorem 2.1.2 the smallest geometric growth
constant for the scquence (b, z3), n > 0, and thus for the entire formal power series b,
is determined by the location of any singularity nearest to the origin in the complex
plane, say ). Specifically, My = 1/|xj|, where il is easily verified from (3.1.1) that
xy is the positive real number

1
max{ M, Mz}’

Ty =
This proves the theorem. =

The following theorem describes the radius of convergence of the parallel connection

of two locally convergent Fliess operators.

Theorem 3.1.2. Let X = {zg,51,...,Tm}- Let ¢,d € RE (X)) with growth con-
stants K., M, > 0 and K4, Mg > 0, respectwely. If b= c+ d then

(6, )| < KoM wlt, ve X (3.1.2)

for some Ky > 0, where
My = max{M,, My}

Furthermore, no smaller geometric growth constent can satisfy (3.1.2), and thus the

radius of convergence is
1

max{M,, Ma}{1+m)

Proof: First observe that

(c+d,v) <

(e, V)| + [(d. v)]
((_:i, v+ ((f“ V)
(Bh v),

[ A
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where & d and b are defined as in Theorem 3.1.1 and z = 1,2,...,£. In light of
Theorem 3.1.1 and Theorem 2.1.2, (b, v) is asymptotically bounded by M, | |f!. Thus,

some K > 0 can always be introduced such that
(B, v) < KM )t v e X,

Furthermore, (b,,z%}, n > 0 is growing exactly at this rate. Thus, no smaller geo-

metric growth constant is possible, and the theorem is proved. [

3.1.2 Global Convergence

In this scction, the radius of convergence of the parallel connection of two globally
convergent ¥liess operators is calculated. The following theorem is a prerequisite for

proving the main theorem of this section.

Theorem 3.1.3. Let X = {u&g,z),...,m}. Let &,d € REL((X)), where each com-
ponent of (¢, n) and (d,n) 1s K M n € X* unth K., M, > 0 and Kd;’*/fg’l, ne X*
wnth Ky, My > 0, respectwely. If b = &+ d, then (b,.v) < {51,;55”'), v € X*, and the

sequence (b, zk), k > 0 has the exponential generating function
flzo) = Koexp(Mct) + Kqexp(Mat)
foranye=1,2,... £

Proof: There is no loss of generality in assuming £ = 1. Observe for any v € X7,
n > 0 that

(byv) = (&v)+ (J, v)
— KM+ KM (3.1.3)

Thus, (b, v) = (b,23), n > 0. As in the local case, f(t) is the zero-input response of
I3, Specifically,

oa _ tk
fit) = Y (b u) = Flol
k=0
K MEF SN Ky MEtF
DD R D
k=0 k=0

= K, exp(M.t)+ Kqexp{M;t).
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Thus, the theorem is proved. n

Now the main result of this section is presented.

Theorem 3.1.4. Let X = {z¢,z1,...,T,}. Let ,d € RELUXY) wnth growth con-
stants K., M, > 0 and K4, My > 0 respectweely. If b= c+ d then

(b, v)| € (B2l vexr, i=12,.. ¢
where the sequence (b, x§), k > 0 has the exponential generating function
flzg) = Keexp(Mouy) + Kgexp(Maxo).
Thus. the radius of convergence s mfinity.

Proof: The proof is perfectly analogous to the local case, and hence, is omitted. m

From equation (3.1.3), it can be seen that global convergence is preserved in general
under the parallel connection. In addition, the nearest singularity to the origin of
the function f, say zjp, is at infinity. Thus, the smallest geometric growth constant
of b is

M, = 1/]zp| = 0.
This implies that the radius of convergence is infinite, and therefore I, defines an

operator from the extended space L (%) into Clty, 00).

3.2 THE PRODUCT CONNECTION

3.2.1 Local Convergence

In this section the radius of convergence of the product connection of two locally
convergent, Fliess opcrators will be calculated. The following theorem is a prerequisite

for proving the main theorem of this section.

Theorem 3.2.1. Let X = {z4,%1,...,5m}. Let &,d € R (X)), where each com-
ponent of (1) and (d, 1) 15 Kcﬂﬂnih;“, 7w e X* with K,,M. > 0 and KdM,L”'|q|!,
n € X* unth Kyq, My > 0, respectwely. If b = twd, then the sequence (b, zf), k > 0
has the exponential generating function

K. K,
(1 - ﬂifc.?,”g)(l — ﬂfdﬁ?n)

flzo} =
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foranyi=1,2.... £ Moreover, the smallest possible geometric growth constant for
b is

ﬁ/fb = max{ﬂ.{i'c, ﬂfd}
Proof: There is no loss of generality in assuming ¢ = 1. Observe for any v € X%,
n > ( that

(E,V) - Z Z (Eaﬂ)(guf)(ﬂwfaf/)

J=0 nEXd
LEXT-Y
= DKM KM Tn=71 Y (naéw)
3=0 ne X3
gEX™ 3
$ : Ti— . e
= Y K.M]jl KM J(n—;)!( )
=0 J

= KK, Z M? M7 nl.
3=0

Furthermore, b and the sequence (b, 272), n > 0 have the same growth constants.

Observe that f(t) is the zero-input response of Fj. Specifically,

F()

i
=
e}
=
&
|
ol
=)

oo [w a]
= > KMy KoMt
k=0 k=0

KK,
T - M- M) (32.1)

Since f is analytic at the origin, Theorem 2.1.2 is applied to compute the smallest
geometric constant. Specifically, M, = 1/|z}|, where it is easily verified from (3.2.1)

that the singularity nearcst to the origin is the positive real number

1
! - -
%07 max{M,, My}

This proves the theorem. [

Now the main result of this section is presented.
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Theorem 3.2.2. Let X = {xg,21,...,Tm}. Let ¢,d € RELU(X)) with growth con-
stants K., M, > 0 and Kq, My > 0, respectively. If b= ci.d then

(6, )| < KoMM ), ve X (3.2.2)
for some K, > 0, where
M, = max{M,, M;}.

Furthermore, no smaller geometric growth constant can satisfy (3.2.2), and thus the

radius of convergence is
1

max{ M., Mz}{(1+m)

Proof: First observe that

ewd.v)| < Z ST e nlld Olrwe. v)

= neX?
gexm-J

Z Z (Z, 7 (d £) (7?‘—“5}

3=0 ncx2
gex™—1

= (Em V):

[A

where & d and b are defined as in Theorem 3.2.1 and ¢ = 1,2,...,¢. By Theorem
3.2.1, and Theoremm 2.1.2, (h,,v) is asymptotically bounded by JMJ,”||V|!. Thus, some
K > 0 can always be introduced such that

(B, v) < KM ), v e X7,

Furthermore, (b,,x3), n > 0 is growing exactly at this rate. Thus, no smaller geo-

metric growth constant is possible, and the theorem is proved. [ ]

One observation is that the exponential generating functions in Theorem 3.1.1 and
Theorem 3.2.1 have identical sets of singularities. Therefore, the minimal geometric
growth constants for the generating serics of the parallel and produet connections
are the samec. As a result, for locally convergent component systems the two inter-

connections have the same radius of convergence.

3.2.2 Global Convergence

In this section the radins of convergence of the product connection of two globally
convergent Fliess operators will be calculated. The following theorem is a prerequisite

for proving the main theorem of this section.
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Theorem 3.2.3. Let X = {xo,%y,....m}. Let &,d € RLo (X)), where each com-
ponent of (2,1) and {d,n) 15 KM, 5 € X* wnth K,, M, > 0 and K, M 5 € X*
wnth K, My > 0, respectwely. Ifb =z d, then (b,v) < (b,2l), v € X, and the

sequence (b, zF), k > 0 has the ezponential generating function
flzg) = K. Kgexp[(M, + My)zq]
forany:=1,2,... ¢

Proof: There is no loss of generality in assuming ¢ = 1. Observe for any v € X",

1 > 0 that

Eudy) = 3 S En@omnue)

3=0 nex’
cexn—i
ki3
= S KM KM Y (nwév)
F=0 nEXT
LEXT T

= S KM KM (n)
2=0 J

= K Ki(M,+ M)". (3.2.3)

Furthermore, b and the sequence (b,z%), n > 0 have the same growth constants.

Observe that f(t) is the zero-input response of Fj. Specifically,

f(t)

N :

Z(bm%)ﬁ = F50]

k=0

= F[0]F4[0]

& K MRS KMt

a ) Pl
k=0 k=0

= KchCXp[(MC—I-Md)t].

This proves the theorem. n

Now the main result of this section is presented.

Theorem 3.2.4. Let X = {0, 21,...,%m}. Let c,d € RES((X)) with growth con-
stants Ko, M, > 0 and K4, Mg > 0, respectwely. If b= cuwd then

(b, )] € Bz, veX', v=1,2,...,1
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where the sequence (b, z5), k > 0 has the exponential generating function f.
flao) = K Kgexp[(M. + Myjay).
Thus, the radius of convergence s wmfinuty.

Proof: First observe that

cwd) = 3 T (ende)nwt.y)

1=0 gex:
gEXT—]

Hewd,v)] < Z > e w8 (rwé, v)

=0 qex?
£EXP ]

Z Z Cor 1 d E)nwé,v)

3=0 qexz
EEXM ]

= (51,1/),

[

where ¢, d, b are defined as in Theorem 3.2.3, and ¢ = 1,2, ..., £. In light of Theorem
3.2.3, (b, v) is bounded by (bz,xlvl), which has the exponential generating function

f. Therefore, the theorem is proved. ]

From equation (3.2.3), it can be scen that global convergence is preserved in general
under the product connection. In addition, the nearest singularity to the origin of
the function f, say zj, is at infinity. Thus, by Theorem 2.1.2, the smallest geometric
growth constant of b is

M, = 1/|zg| = 0.

Hence, the radius of convergence is infinite, and therefore F, defines an operator from

the extended space Ly".{fo) into Clto, oc).

3.3 THE CASCADE CONNECTION

3.3.1 Local Convergence

The goal of this section is to calculate the radius of convergence of the cascade
connection of two locally convergent Fliess operators. The analysis for this inter-
connection is substantially more complex as compared to that for the parallel and
product connections. A preliminary theorem and a lemma will be needed to prove

the following main result.
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Theorem 3.3.1. Let X = {z0,71,...,Zm}. Let c € RESUX)) and d € REL{({X))
wnth growth constants K., M, > 0 and Ky, My > 0, respectively. Ifb=cod then

|(6,0)] < Kby, v e X (3.3.1)

for some K, > 0, where
My
L (e o (358

Furthermore, no smaller geometric growth constant can satisfy (3.3.1), and thus the

M, =

redwus of convergence 18

1 1 M, — M,
|1 —mEW .
M1+ m) [ mad (mKd “p ( MK, )ﬂ

The following theorem and lermina are prerequisites for the proof of the main result

above.

Theorem 3.3.2. Let X = {wp,z1,...,Zm}. Let ¢ € REL{U(X)) and d € REL (X)),
where each component of (€, 1) 1s KcMcl”||n|!, 7€ X* with K., M, > 0, and hkeunse,
cach component of (d,n) s Kd_M(L”lMI, n e X* with Kg, My > 0. Ifb==¢od, then
the sequence [5“:1:;5), k > 0 has the exponentfial generating function

K,

H o) = e bR /M) In(1 = Mzo)
forany:r=1,2,... £ Moreover, the smallest possible geometric growth constant for
b s

My, = Mq

T -y

where W denotes the Lambert W -function, namely, the wmuverse of the function

g(W) = W exp(W) (3.3.2)

[4].

Prosf: There is no loss of generality in assuming £ = 1 First obscrve that ¢ is

cxchangeable, and thus, from Theorem 2.3.5 it follows that

70 (2 0 )27

b o= ZKM’“ 3 k'% " :

L e
oy T =0 ht
Tt trm=k

o0
Z K. (M. (xq + mazody)) ~ *
k=0

I
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Note that the identity d, = c?_,, for every i, = 1,2,...,m has been used above.
Shuffling both sides of this cquation by M.(zg + mupd,) vields

(s8]
ELJ.: _-nlfc(j:n + mﬂ','od_.l) = Z KC(II'{C(-T:U + mx{)&l)) IJ|k+]_.
k=0

Adding K, to both sides gives

By inspection, (b,0) = K., (b,yxg) = K M.(1 + mKy) and (b,z,) = 0 for i =
1,2,...,m. Let (b1y) = max{(b,v) : v € X*}. Forany v € X", n > 2 it fol-
lows from (3.3.3) that

(B,I/J = ﬁ’fc‘z Z (5,?})(&:0—i—m:}:[](f],f)[?}mg,v)

=0 gpcXxt
EEXT TR

= ﬂ'fc Z Z (B .*']) (.’IC[} + m.’l’fgd_l, 6)(?’} |.1.|§, L’)
=0

= nEX?
£EXYJ—I

1—1

JM{.‘ Z(Bs Vi‘-) Z (.'I'[} + m:f:g(lT], mﬂér) (?’]lu;l','gf;, V)

=0 neX?
IU{E’EX”_Y

[/

n—2
= ﬁ/f{\_Z(E, Vu) Z (1 +?T.’,EZ]7£;)(T} quB[]&f?V)
=0

nEX?
E{E}(n—l—l

+ﬁfc(g, Vn—l) Z (]. + mo?l., @)(7}' Xy, V).

TFEX"'_J

In the first summation directly above, note that |£/| > 1, and thus, (1 + md;, &) =

m{dy, £'}). Consequently,

n—2
Br) < MY (Gu) mEM T n—i— 1t > (pwaeg,v) +
1=0 nCXtE
Erexn—n—l
(b, v ) M1 +mKy) > (7w, v)
neXn-1
Ti=—2
< MY (bow) mEMT =i =L Y (n ) +
=0 pEX?
[1=0 clial
(b, v )M(1+mEy) > (nwE,v)
Y;EXH_‘

EEX
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n—2
= M.> (bv,) mK M7 (n— i - 1) (r_") + (B, vp_1 )Mo (1 + mE,)n.
i3
=0
Note that the inequality above still holds when the left-hand side is replaced with
(b, v,). Now let a,, n > 0 be the sequence satistying the recursive formula
n—2 n
Gn = M, Z atm.Kdﬂzf((tn_i_l)(n —z—1)! ( ) + dp g M1 +mKyn, n > 2,
i
2=0}
wherc ay = K, and oy = K M1 + mKjy). Since the recursion above involves only
positive terms, it follows that (5} ) < a,, Vn > 0. It is easily verified that the
sequence a,,n > 0 hag the exponential generating function

K.
1-— J‘VIC.’I?[] 4 (mﬂ/fcf{d/ﬂ/fd) 1Il(]_ — Mdi}?g).

f(ao) = (3.3.4)

When all the growth constants and m are unity, a,, n > 0 is the integer sequence
number A052820 in [29]. See the first row of Table 3 for the first few entries.

TABLE 3: Selected sequences from the OEIS for some cascadce examples

! sequence | OEIS number ' n==01,2,...
@ (local) | A052820 | 1,2,9,62,572,6604,91526, ...
b, (global) | A000110 | 1,2.5,15,52, 203,877, 4140, . ..

Next it will be shown that (¢o d,z?) = a,,. It is sufficient to show that the zero-
input response of the cascade system represented by the Flicss operator Fi, 7, shown

in IFigure 3 is equal to f. Clearly,

Ky

bl(t) = Fd1 [O] = ZKdﬁ'f?tk = mf;g

k=0
From (3.3.3) observe

tod= K.+ (€od)w M.(xo + mzoed,).
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Note that zod; has the exponential generating function j; mn{r}dr. Therefore,

y(t) = Folo](t) = Fe[F3{0]](t) = Frogl0](t)
= K. +yt)M, (t +m/g'vl(r) dr)

J— KC
- £
1— M, (t +m fy v (7) d.T)
J— KC
T 1= Ma+ (mM.Kz/Mg)In(1 — Mat)

= f{t)
This proves that for every n > 0
(b,v) < (b)) < an=(b,30), vE X"

Since f is analytic at the origin, the smallest geometric growth constant is M =

1/|zg|, where it is easily verified from (3.3.4) that z{, is the positive real number

I 1 M. — My
= — 1 —mKW{ ——¢ —_°
‘o My [ mad (mKd exp ( mM Ky ))]

This proves the theorem. [ |

It is known that if « is analytic with generating series ¢, then y = Filu] is
also analytic [32], and its generating series is given by ¢, = co ¢, [19,26,27]. In
this situation, the following corollary is useful for estimating a lower bound on the

interval of convergence for the output.

Corollary 3.3.1. Let X = {zg,Z1,...,Tm} and Xg = {xo}. Suppose c € R ({X))
with growth constants K., M. > 0 and ¢, € RT,[[X,]] weth growth constants K., M.,

respectwvely. Then, ¢, = coc, salisfies

k k
(e, 25)| < Ko, M k! k20
Jor some K., > 0 and
JM
ﬂ'fcy — Oy

[1 —mK, W (m}% exp (fji;‘}‘{c“))]

Thus, the wterval of convergence for the output y = F, [u] 15 at least as large as
T=1/M,.
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The following lemma. is also needed for proving the main result.

Lemma 3.3.1. Let X = {xy,x1,...,%m} and c,d € RE((X)) such that |c| < d, where
el := 3" ex l(en)| n. Then for any fived € € X* 1t follows that [{oc| < od.

Proof: The proof is by induction on & = |€| — |£|s- Let & = z3® and & =
Lo Ty, xo a2y for k > 0, where 1 <3, < m. For k = 0, the claim is trivial

since
Sooc=ap°oc=ay" =" od =& od.

Assume now that |(€x o ¢, n)| < (€ o d. 77} up to some fixed k& > 0. Observe that

fkv10C = xgk et (C"'k-'—l L (gk © C))

(hppy w (Ex 0 €), 5 T ()
= Y ()& o e Dlaw 8,5 ),

320 ocEXS
sCX™2

il

(£k+1 oL, "'})

where n 1= |:c0_(n‘"' D0m)| > 0. Therefore,

(Gemoem] < D3 [(e0)|[Eoe Bl (anp,z ™ )

=0 wexs
dexm—72

Tt

< 3 Y (o )& 0 d B0 w855 D ()

=0 aex?
A X712

= ({1 0d.7).

Thus, the inequality holds for all & > 0, and the lemma is proved. [

Proof of Theorem 3.3.1:
Since |d| < d, it follows from Lemma 3.3.1 that for any v € X~

bl < > Hemlitned,v)|

neEX*

> KMl (nod,v)

neX*

- (BM V)a

V4
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where b= odand ¢ = 1,2,...,4. In light of Theorem 3.3.2, (b,, ) is asymptotically
bounded by Mgl”||u|!. Thus, some Kp > 0 can always be introduced such that

(b, v) < KoM |l v e X7,

Furthermore, (b, x}) is growing exactly at this rate. Thus, no smaller geometric

growth constant is possible, and the theorem is proved. n

Example 3.3.1. Let X = {xg,2,} and ¢,d € R{{X}) such that M = M, = M,
Then

M
1— K W (1/Ky)

- (1ol

JMb =

when Ky > 1. This is consistent with Theorem 2.3.4 and Table 1. On the other
hand, if K4 = 1 then M, = (1 — W(1))7'M = 2.3102M, which is less than the
estimate (¢, + 1) M = 2.6180M given by Theorem 2.3.4. 0

Example 3.3.2. Suppose X = {p, 21} and b= Zod with & =), . K Pty
andd = > e x- KL;JM(L”l |n|! 7. The output of the cascaded system as shown in Figure 3

is described by the state space system

. M,

7 = Kczf(_1+z2), z1{0) = K,
M, .

B o= 2(1+u), 2(0) =Ky
Ky

:E)‘ = Z1.

A MATLAB gencrated zero-input response is shown in Figure 5 when K, = 1,
M. =2, Ky =3 and M; = 4. As expected from Theorem 3.3.2, the finite escape
time of the output is te.. = 1/M, = 0.1028. The output responses corresponding to
the analytic inputs ui(t) = 1/1—¢ and uy(¢) = 1/1—12, each having growth constants
K., = M., = 1, are also shown in the figure. Their respective finite escape times
are ... = 0.08321 and .. = 0.08377. Here u; has the shortest escape time since its

generating series

o0
Cyy = E k! zk
k=0
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has all its coefficients growing at the maximum rate. Where as
Gy = _(2K) 23
k=0

has all its odd coefficients equal to zero. By Corollary 3.3.1, any finite escape time

for the output corresponding to any analytic input with the given growth constants

K.,, M., must be at least as large as T = 1/M,, = 0.05073. g

50 -
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Fig. 5: Output responses of the cascaded system Fl 7 to various analytic inpufs in
Example 3.3.2

3.3.2 Global Convergence

A parallel analysis is done in this section to compute the radius of convergence
of the cascade connection of two globally convergent Fliess operators, The following

theorem contains the main result.

Theorem 3.3.3. Let X = {79, %1,...,Zm}. Let c € RES((X)) and d € RE (X))
with growth constants K., M, > 0 and K4, M; > 0, respectively. Assume € and d are
defined as in Theorem 3.3.4. Ifb=cod and b = Zod then

(b, )] < (Biy 2l ), v e X*, i =1,2,...,4,
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where the sequence (b, zk), k > 0 has the exponential generating function

_ mKgexp(Myxo} + Myzg — mKy
flao) = Keexp ( Mo/, '

Therefore, the radius of convergence s mnfinaty

An intermediate result is essential in proving the main theorem above.

Theorem 3.3.4. Let X = {z9,z1,...,Tm}. Let © € REL{X)) and d € REL((X)),
where each component of (¢,n) 18 KCMCM, n e X* unth K, M, > 0, and hkeunse,
each cornponent of (d,n) s Kd.Mf'l, n € X* with Ko, My > 0. Ifb = ¢od, then
(b, v) < (Bg,xg’l), v € X*, and the sequence (b, z5), k > 0 has the ezponential

generating function

mKgexp(Mrs) + Myzg — mK,
f(:.‘:g)chexp( d P( o 0) ao d)

Ma/ M,

foranyr=1,2,...,¢.

Proof: As in the local case, there is no loss of generality in assuming £ = 1. Using
Theorem 2.3.5, observe that

. Z"" KM > zg” " (2 0 d) '™
h=0 T orgy rmz0 To: Fm:

rg— +rmek

- K i (Mrc(a:g + mmg&l)) - k‘

P k!
Therefore, (b,#) = K, and
oo = 1ak=—1
e (Me(zo + mazod,y)) _
;' (h) = KC; D) W M,(1 4 mdy)
= buw M1+ mdy). (3.3.5)
By inspection,
(z,'(),0) = K.M.1+mK,)

(x5(®),w0) = K. M.mEK M;+ K (MA1+mKy))®
(23 (b),z.) = KMmKiMy 1=1,2 ..., m.
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For any v € X", n > 2, it follows that

(@' (B),p) = MY > (Bn)(l+mdi,€)(n.Ev)
i={ gex?
FEXT -

n—1
= Mcz Z (b, conY(1 + mdy, €} zen w&, v)

=1 ggnCcXt

{EX“_“
+II'/{C Z (E: -’507?’) (]- + m(fla [Z)) (3:077;} V)
.'-‘CUTI’EX“
+ﬂfc Z (5! @)(l + '.rn,cfh g) (‘g" 'U)
aexn
n—1 3
= MY > (a5 (®), 7)1+ mdy, ) (won’ & v)
1=1 nﬂ'exa—i
M, > (g (B, n) (1 + mdy, B (o, v) + M(b, 0)m(dy, v).
nreXn—l
Thercfore,
n—1
(@' @), v) < MY (a5t (B), mon)mKaMF™ Y (nwé,v)
=1 nEX®

feXh—t

(5 (B), e ) Mo(1 + mK Q) + K MK M}

-1
-1/7 Ti—t n
- MCZ(% Y(®), 5,1 )mK M (?)

=1
A+ (25 (B), N1 ) Me(1 + mKy) + K. M.mK M.

Similar to the analysis in the previous section, let a,,, n > 0 be the sequence satisfying
the recursive formula
nn—1
n = M, Y ymEgM;™ (:”) + an M1+ mKy) + K.MmK M3, n > 2,
=1
where ay = K, M.(1+mKy) and a; = K, M.mKy;M;+ K (M,(1+mK,))?. 1t follows
that (z5'(b)}, vn) < @n, ¥n = 0, and thus, (b, 1,) < by, ¥n > 0, where b, = a,_4
and by = K. It is easily verified that the sequence b,, n > 0 has the exponential

generating function

B mKgexp(Myxo) + Mazo — mHKy
flzg) = K exp ( Mo /M. .



35

When all the growth constants and m are unity, b,, n > 0 is the integer sequence
number A000110 {shifted one position to the left) in the OEIS. These integers are
called the Bell numbers. See the second row of Table 3 for the first few entries.
Next it will be shown that (o d,x}) = b,. It is sufficient to show that the zero-
input response of the cascade systemn represented by the Fliess operator £, 4, shown

in Figure 3 is equal to f. Clearly,

ui(t) = Fg,01(1) =) KdeF — Kyexp(Mgt).
k=0 )

From (3.3.5) and the fact that z;1(b) = 0,4 =1,2,...,m, it follows that
y{t) = May(t)(1 + mKzexp(Mat)), y(0) = K.

Solving this differential equation vields

. mKky eXp(.-"Lfdt) + Mgt —mKy
y(t) —Kcexp( M, I, :

Thus, for every n > 0

(b,v) < (byva) < by = (B? xg), v € X7

and the theorem is proved. [ |

Proof of Theorem 3.3.3

Again from Lemma 3.3.1, it follows that for any v € X~

(bv)] < D lemllinod,v)

neX*

< > KM (nod,v)

neX*

= (b, v).

By Theorem 3.3.4, (b,,v) is bounded by (&, xg’l), which has the exponential generat-

ing function f. Thus, the theorem is proved. [ ]

It is worth noting that the Bell numbers {(without any left shift}, B,, have the

exponential generating function e ~1. Their asymptotic behavior is

B, ~ n—% (/\(n))nﬂ—%e,\(n}—ﬂ—l’
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where A{n) = n/W{n). Thus, the Lambert W-function appears to also play a role
in the global problem. It is also known that the Bell numbers play a central role
in the analysis of function composition [11]. Most importantly, since the double
exponential appearing in Theorem 3.3.4 has no finite singularities, as appeared in

the local analysis in Section 3.3.1, the following main result is immediate.

Theorem 3.3.5. The cascade connection of two globally convergent Flress operators
has o radius of convergence equal to wfinity. Therefore, the output of such a system

15 always well defined over any fimate winterval of time when v € LT, (fo).

It is important to understand that this theorem is not saying that the composite
system has a globally convergent generating serics in the sense of (1.1.3). If this were
the case, then it would be possible to bound y(t) = F..4[0] by a single exponential
function rather than a double exponential function (see [20, Theorem 3.1]). Thus,
the fastest possible growth rate for the coefficients of a cascade conncction involving
components with globally convergent generating series falls somewhere strictly n

between the local growth condition (1.1.1) and the global growth condition (1.1.3).

Example 3.3.3. Suppose X = {zg,2,} and b = o d with ¢ = E”Ex_ K MM 7 and
d= Ene X+ KdM'c]f' 1. The output of the cascade system is described by the state

space realization

2] = (_»3](]. + Zg), 2] (0) = Kc
2:2 = Jnt'deg(l + ?L), ZQ(OJ = I{d
¥y = Z1.
A MATLAB generated zero-input response of this system is shown on a double

logarithmic scale in Figure 6 when K, = M, = K; = My = 1. As cxpected from
Theorem 3.3.4, this plot asymptotically approaches that of y{t) =t as t — occ. O

3.4 SUMMARY

A complete analysis of the radius of convergence of the parallel, product and
cascade connections of two analytic nonlinear input-output systems represented as
Fliess operators has been presented. For the parallel and product connections, if

the component systems are both locally convergent, then the radius of convergence
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TngIniyeen
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Fig. 6: Zero-input responsc of the cascade system Fj.7 in Example 3.3.3 on a double
logarithmic scale and the function y(¢) = ¢

of the overall system was found to be the minimum of the radii of convergence of
the component systems. If they are globally convergent, so is the overall system.
Therefore, the radius of convergence of the overall systemn is infinite. For the cascade
connection, if the component systems are both locally convergent, then the radius of
convergence is finite and can be computed in terms of the Lambert W-function. A
similar method was used in the case of analytic inputs to compute a lower bound on
the interval of convergence of the output function. On the other hand, if both systems
arc globally convergent, then the radius of convergence was shown to be infinite, even
though it is known that the global convergence property is not preserved in general.
This means in particular that if the input is well defined and absolutely integrable
over any finite time interval, then the output of the composite system is also well
defined over the same interval. The Lambert W-function played an implicit role in

the analysis of the global case.
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CHAPTER 4

THE RADIUS OF CONVERGENCE OF THE FEEDBACK
CONNECTION

In this chapter, the radius of convergence is determined for the fecdback connec-
tion. First, sclf-excited feedback systems are addressed. Subsequently, the analysis
for the unity feedback case is presented. In each case, separate analyses are done
for closed-loop systems having components with locally convergent generating scries

and globally convergent generating series.

4.1 THE SELF-EXCITED CASE

As discussed in Chapter 2, the generating series e for the self-excited feedback
interconnection of I, and F; shown in Figure 4 satisfies the identity ¢ = (cod) oe.
Letting ¢ o d be redefined as ¢, a unity feedback system involving F, is characterized
by e = c o e. Therefore, there is no loss of generality in assuming unity feedback in

the self-excited case.

4.1.1 Local Convergence
The main result of this section is the following theorem.

Theorem 4.1.1. Let X = {xg,21,...,Tm} and ¢ € RT-{({X}) urth growth constants
Ko, M, > 0. If e € R™[[Xy]] satisfies e = coe then

l{e, )} < K. (K )M)"n!, n >0, (4.1.1)
for some K. > 0 and

1
a(Ke) = 1—mK,In(l+1/mK,)

Furthermore, no geometric growth constant smaller than o K )M, can satisfy 4.1.1,

and thus the radwus of convergence 15 1/(a(K)M.).

Note that if m = 1, the function a{K,) can be written as the series expansion
about K, = o0

4 1
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1t is easy to show that a{K,.} < 3(K.) for all K, > 1 and 3{K.)/a(K,.) = 9 for K. >
1, where 8{K,) is defined in Theorem 2 4 4. Thus, Theorem 4 1 1, which describes the
radius of convergence in this case, constitutes an order of magnitude improvement
over the lower bound given in Theorem 2.4.4. Before presenting the proof of this
theorem, a variety of intermediate results are required involving exchangeable series.
The following theorem characterizes the self-excited feedback connection of a Flicss

operator having a particular type of exchangeable generating series.

Theorem 4.1.2. Let X = {34,%1,...,%m}. Suppose T € RE((X)), where each
component of (2, n) 1s K. fl,nl[-r,‘]T, n € X* unth K., M, > 0. Then each component of
the solution € € R [[Xo]] of the self-excited unity feedback equation @ = Go € has the

exponential generating function

-1
flzo) = _ : (4.1.2)
m [:]_ + W (_ 1;};:}:{}:(_\ exp {Mnmﬂ;n[;{-lc-nd(c)})}
In addition, the smallest possible geometric growth constant for € 15
M, = oK, )M,, (4.1.3}

where

1
WK, = .
) = R A F 1mEy

Proof:  Since all the component series of @ are identical, the same is true for e.
Therefore, the focus will be a single component, say €;. First it is shown that &
must satisfy the shuffle identity

&1 = K, + M.[é1w (zo + mxo&y)].

Observe that from Theorem 2.3.5 and the shuffle product version of the binomial
theorem it follows that

o L To AR
L "m e e
f=(eoen = KM Y mT L EntORT
(-

P!
=0 0. Fm0 m
mt  trm=Fk

o0 TrL
= Z K, (Mc (3:0 + Z a:ua))
k=0 =1

= Z K, (M.(zo + mxpéy)) ™ k.

k=0

Lok
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Shuffling both sides of this equation by M.{zo + mxeé1) yields

o0
&1 w Moz + mzgy) = Z K (M (o 4 magg)) 2 .
k=0

Adding K, to both sides gives
&) = Kc + ﬂffc[él LLi (Io “+ Mra€ )] (414)

When written in terms of generating functions, (4.1.4) is equivalent to

fon) = Kot Mo (oS @)+ m [ 5€) def(an) ) £0) = K
0
A simple calculation shows that this equation is equivalent to

ch!(:ﬂg) = —'IVIC (fg(x(}) + mfs(x[})) ) f(U) = KC. (415)

One can verify by brute force, since M, is nonzero, that {4.1.2) is the solution of
{4.1.5). Since f{zo) is analytic at xy = 0, the smallest geometric growth constant is
determined by the location of its singularity nearest to the origin, x; € €. In which
case, M, = 1/ |z, where z{ satisfics

1+ mkK, M.z — (1+mK,)
1+ W[ —————c¢ -0
m { + ( oy exp [ mE, 0

Equation {4.1.3) and the subsequent identitics then follow directly by solving this

equation for zj via (3.3.2). [ ]

One additional technical lemma is needed before the proof of Theorem 4.1.1 can

be presented. Given any series ¢ € R™{{X)}, it is convenient to define |¢f =

> nex- [(e,m){ 7 in the lemma below.

Lemma 4.1.1. Let X = {z¢,%1,....Tm}. Suppose ¢,é € R {{X)) have growth
constants K., M, > 0, and specifically each component of € is Kcﬂﬂn”nﬂ, ne X
If e,& € R™[[Xo]] satisfy, respectively, ¢ = coe and &€ = Co € then || < &,

t=1,2,...,m.

1

Proof: Since the mapping d +— cod is a contraction, it follows that if ¢, (k) := (c®*00),,
k > 1 then e, = limy .o e{k). Likewise, one can define a sequence €(k) using
Z. Tt will first be shown by induction that |e,(k)| < &(k), & > 1. Observe that
e(1) = Y ol zg)ag and (1) = 37 o KcMnlzg. Therefore, le,(1}] < &(1).
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Now assume the claim holds up to some fixed & > 1. Then, using Lemma 3.3.1, for

any § € X~

ek + 1), = [((coe®)n&)l =] (c.m) (noelk).€)

neX”
< Z {{c.,m)| [{noe(k). &)l
< Z K M )t (n o &(k), €)

= (a(k+1).¢).

Thus,
le.(k)| < &(k), k> 1,

and the initial claim is established. Next, by a property of the limit supremum,
limsup |(e,{k),§)| < limsup(&, (k). &}.
k—roo koo

Since each sequence converges, it follows that |e,| < &,. [

Proof of Theorem 4.1.1:
If e, ¢ and & are defined as in Lemma 4.1.1 then |e,}] < &, 4 = 1,2,...,m. From

Thecrem 4.1.2, (g,,z}) is asymptotically bounded by (a{K)M.)" n!. In which case,
|(€?.1 1»3)| < (éui'g] < K, (&(Kc)Mc)n ﬂI, n > 0,

for some constant K, > 0. This proves the theorem. u

The following examples illustrate the main results of this section.

Example 4.1.1. Let X = {zg,%}. Suppose € satisfies € = € o € with ¢ =
D mexs K Mgt . This series is exchangeable, so by Theorem 4.1.2, M, =
a(K )M, From (4.1.5) it follows that the output of the self-excited unity feedback

gystem is described by the solution of the state space system

;= %(z2+23): 2(0) = K,

¥y = 2z

MATLAB generated solutions of this system are shown in Figure 7 when K, = M, =

1 and when K, = 0.5, M, = 2. As expected, the respective finite escape times are
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Trig. 7: Qutputs of the self-excited loop in Example 4.1.1

tese = L/a(1l) = 1 — In(2) = 0.3069 and teee = 2/a(4) a2 0.2149, which in this case
are the radii of convergence. Also, from (4.1.2) it follows when K, = M, = 1 that

-1
flzo) = 1+ W({—2exp{zg — 2)}
41 469 5
= l+2$u+d$o + ?mu + _i2_$04+ O(:‘;‘o‘)) :

The coefficients {e, z§), n > 0 correspond in this case to OEIS sequence A112487 as

shown in Table 4. 0

TABLE 4: Selected sequences from the OEIS for feedback examples

L sequence OEIS number n=0,1,2,... J

(2,25} (Example 4.1.1) A112487 1,2,10,82,938,13778, 247210, . ..
{&,z1) (Example 4.1.4) A000629 1,2,6, 26,150, 1082, 9366, . ..

Example 4.1.2. Let X = {xg9,71} and consider the case where e salisfies e =
ceewithe= ) ., n!z}. This c is also an exchangeable series except here many

of the coefficients have been zeroed out in comparison with the previous example.
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Therefore, it is likely that the radius of convergence will be larger. In this special

case, equation (4.1.5} reduces to
filwo) = flao), fO)=1,

which has the solution
1

flzo) = i

The singularity at zg = 1/2 implies that M, = 2 < 1/(1 —In(2)) = 3.2589. So in fact
the radius of convergence is .5, which 1s larger than 0.3069 obtained in the previous
example. The function f is known to be the exponential generating function for the
sequence {e, rj) = (2n — 1)1, n > 0. {The double factorial for a positive odd integer
r is defined as nl! = n{n —2)---1 and —1!1 := 1.) Using an identity for the double
factorial, it follows that

(2n)! n+1  (2n)

©30) = S = o g D
41
= (n+ )Cn nl
211
Thus, the generating series for the feedback system is
oo Cn
> = — 11 zg.
e ; o (n+ 1} zg

The output of the corresponding self-excited unity feedback system is described by

the solution of
= 22, 20 =1
¥y o= Z.

A MATLAB generated solution of this system is shown in Figure 8. As expected, it
has a finite escape time of te,. = 1/M, = 0.5 > 1 — In(2) = 0.3069. 0

Example 4.1.3. Consider the feedback system shown in Figure 4 with ¢ = d =

EY}EX*

Theorem 4.1.1 applies. The output y of the feedback systemn with v = 0 is described

nll n. Clearly ¢ o d is locally convergent, but not exchangeable. Thus, only

by the state spacc system
21 = 212(1 + Zg), 21(0) =1
i = 22, »(0)=1

¥ = =z
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Fig. 8 Output of the self-excited loop in Example 1.1.2

The output y, as computed by MATLAB, is numerically indistinguishable from the
K, =X

M, = 1 case shown in Figure 7 for Examnple 4.1.1. This is expected since
elk +1) = coe{k) and e(k + 1) = (¢ o ¢) o e(k)} have the same fixed point. Hence,
tese = 1 — In{2) == 0.3069.

O
4.1.2 Global Convergence

The global analogue of Theorem 4.1.2 regarding self-excited systems is given next.

Theorem 4.1.3. Let X = {zg,1,...,Tm} and ¢ € RE{{X)} with growth constants
K., M. > 0. If e € R™[[X;]] satisfies € = coe then

(e, 23)] < K. (v(K M) "nl, n >0, (4.1.6)
for some K, > 0 and .
NKe) = {1+ 1/mK.)

Furthermore, no geometric growth constant smaller than v (K )M, can satisfy (4.1.6),
and thus the radius of convergence is 1/{v(K.)M,)
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It is known in gencral that global convergence is not preserved under feedback [18],

but e is always at least locally convergent [19]. When m = 1, in light of the expansion

1 1

the global growth condition on ¢ gives a radius of convergence that is about twice

that for the local case. The following theorein is essential for proving the main result.

Theorem 4.1.4. Let X = {zo,21,...,Zm}. Suppuse & € REL{{X)), where each
component of (¢, n} 15 K, M.l "[, n € X* with K., M. > 0. Then cach component of
the solution € € R7o[[Xo]] of the self-excited unity feedback equation & = €o& has the

exponential generating function

K. eXp(Mcf{:O) .
= : 4.1.7
Flzo) (1+mK,) —mK.exp(M.xo) ( )
In addition, the smallest possible geometric growth constant of e 15
= (K M., (4.1.8)

where

1

W) = Ca T TmEy

Proof: Without loss of generality, the focus is on the single component &,. First it

is shown that & must satisfy the shullle identity
x5 (81) = Mc(1 4+ méy) wer. (4.1.9)

Observe that from Theorem 2.3 5 and the shuffle product version of the binomial

theorem it follows that

) o2 xﬂm P (wmoE)
& = L s e —_—
Tan!
k=0 ru, Tml
rpt+ +rm=k
=} - k
(J.Mc(x(] + ??’LLEOBI)) =
= Z 2]
k=0 ’

Thercfore, (€1,0) = K. and

{M.(zo + rrugel)) Lkl
K3 Wbt s
= €j.u AM(L(]_ + mel). (4110)

zy' (@) = o M1+ mé;)
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Therefore,

25 (B1) = M1+ m&;) w .

Since x5 (&) has the exponential generating f’, equation (4.1.9) is equivalent to
f'lze) = M(f(zo) + mf*(x0)), £0) = K. (4.1.11)

It can be verified directly, since M, > 0, that the solution of this differential equation
is K Mozo)
cexp{ M. x
flxzp) = (Meo .
(1 +mK.) — mK,exp(Mzo)

Since f is analytic at zg = 0, the smallest geometric growth constant is again deter-

mined from Theorem 2.1.2 by computing the location of the singnlarity nearest to

the origin, xf. In this case, M, = 1/ |zy|, where &y is a root of
{1+ mK,) — mK exp(M.x) = 0.

Equation (4.1.8) and the subsequent identitics then follow from solving this equation
for . =
The following lemma is a global version of Lemma 4.1.1. Its proof is perfectly anal-
0gous.

Lemma 4.1.2. Let X = {z¢,%1,-..,%Zm}. Suppose ¢,& € RB{{(X)) have growth
constants K., M, > 0, and specifically each component of ¢ 15 K./ {l_r”, n e X"
If e, € R™[[Xo]] satesfy, respectively, € = coe and € = To e then |e| < &,

i=1,2,...,m.

Proof of Theorem 4.1.3:
If ¢, € and € are defined as in Lemma 4.1.2 then |e,| < &, 1 = 1,2,...,m. The

rernainder of the proof is exactly analogous to that given for the local case. [

The following examples illustrate the main results of this subscction.

Example 4.1.4. Let X = {xg,z:}. Suppose € satisfies € = £ o0 & with ¢ =
D omex K MU n. From Theorem 4.1.4 it follows that M, = v{K.)M,. From {4.1.11),
the output of the self-excited unity feedback system is described by the solution of

the state space system

5 = MJ(z+2%), z(0)=K,

¥y = z
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— =t M=l
e K =4 A 24} 5
=0 M

iyl

o 01 DI2 DIE UI4 UI5 0‘6 CIIT DIE
Fig. 9: Outputs of the self-excited loop in Example 4.1.4

MATLAB generated solutions of this system are shown in Figure 9 when K. = M, =
1 and when K, = 4, M, = 0.53. As expected, the respective finite escape times are
tese = 1/4(1) = In{2) = 0.6931 and t.,. = 2/v(4) = 0.4463. Note that these escape
times are in fact about twice that of the respective cases in Example 4.1.1. Also,
from (4.1.7) it follows when K, = M, =1 that

_ exp(zq)
Ho) = o oty

The sequence (e, xf), n > 0 corresponds to OEIS sequence A000629 as shown in
Table 4. O

Example 4.1.5. Suppose X = {xo, 71} and consider the case where e satisfies
e=coewithc=> ., z}. Following the steps in the proof of Theorem 4.1.4 with

ry = 0, the exponential generating function of ¢ is found to satisfy
fza) = fxo)s fO)=1.

Solving this equation directly yields

F(ze) = ——.

1—3?0
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Fig. 10: Output of the self-excited loop in Example 4.1.5

The singularity at 2 = 1 implies that M, = 1 < 1/In(2) ~ 1.4427. Thus, the
radius of convergence is 1. The coefficients of e correspond to n!. The output of the
self-excited unity feedback system is described by the solution of

= 25 z2(0)=1

y = =z

A MATLAB generated solution of this system is shown in Figure 10. It has the finite
escape time tpee = 1/M, = 1 > In(2) == 0.6931. 0

Example 4.1.6. Consider the feedback connection involving the globally convergent

series ¢ = zyand d = )7, z% as discussed in [18]. F.aq has the state space realization

2:'1 = Z129, Z](U)-_—l
2y = 4w, 20)=0

¥y = za.

Setting u = 0, the natural response y satisfies § — gy = 0, y{0) = 0, %{0) = 1, which



49

has the solution

y(t) = V2 tan (%)
By, 121

= Z(_l)k—lgk(Qﬂc—])_k_ (2k — 1)]

t3 t5 7 t.‘}
= iAo 496 5

3! 5! 9!
for 0 <t < 7/4/2 = t.y, where By, denotes the k-th Bernoulh number. Observe that
cod = xory, and thus, My = 1. In which case, to, = 2.2214 > In(2}/ M oq = 0.6931
as expected by Theorem 4.1.3. The existence of ... < oo implies that ¢@Qd is not

globally convergent. Therefore, this example illustrates the fact that the global

convergence is in general not preserved under feedback. 0

4.2 THE UNITY FEEDBACK CASE

4.2.1 Local Convergence

Now the convergence analysis proceeds to the unity feedback case, where a
nonzero input can be applied to the closed-loop system. The following theorem,
which describes the radius of convergence of the unity feedback connection with a

locally convergent component system, is the main result of this section.

Theorem 4.2.1. Let X = {x0,%1.,..., 2w} and ¢ € RT-{{X)} with growth constants
K., M, > 0. If e ¢ R™({X)) satisfies ¢ = cde then

(e, )] € Ke(a(K)M)"n)!, 7€ X°,

for some K, > 0, where

1
1 —mK. In(1+1/mK,)

alK,) =

Furthermore, no geometric growth constant smaller than ol K )M, can satisfy the
wequality above, and thus the radwus of convergence 1s

1
(1+ m)a(K )M,

The following lemmas are needed for the proof.



a0

Lemma 4.2.1, Let X = {x9,1,...,Zm}. The Fhess operutor F, : u — y hawmnng

the state space representation

i o= A(z2+mz3+z22u%)} z{0) = 2y,

1=1
¥y = =
where X, 29 € RT, has a generating series ¢ € R{{X)) whose coefficients satisfy the
mequaltty
0<{en < (e}mloﬂl) ., neXn

Proof: First observe that for the vector fields go(2) = A(2? + m2?) and g,(z) = A2?,

¢t = 1,2,...,m, the Lic derivatives of h{z) = z consist of products of polynomials

with non-negative coeflicients. Therefore, using (2.1.3),
0< (e,) = Lyhlz0), n€ X",

For any &k > 0, let n = z3°%, 20" - -2, To*, where 1 < ¢, < m. Then the Lie

Mg+l .

derivative corresponding to the word na, is
g ":<+1+‘hr = L Triea 1+l Lg’?kh
LR Egy

d
2 3
= L-"’Ig’““ [/\(z +mz )5‘[‘9%'}"}

d d
2
= Ly13k+ 1 |i/\4, E'LQ% h:| + nggk'l ' [AszEL.gﬂk h]

. d
3
= Ly s Lgne, B+ Ly [)\mz L, h}
4 u

When evaluated at 2(0) = 2z,

. d
o "k+1__lh..(2{]) = Lg,  hi(z0)+ ngnk“ [)\mszLg% h(zo)] .
kT 1]

Clearly, the second term on the right-hand side above also consists of products of

polynomials with non-negative coeflicients. Thus, it is strictly positive, and therefore,

Ly, hlz) < L, h(z), k> 0. (4.2.1)

25T np g1+l
+ ket
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This inequality is used to complete the proof of the lemma. Specifically, it will be

shown by induction on & that
gnkh’(zo) g | h(zo) k>0

The claim is trivially true when & = 0. Now, assume it is true up to some fixed
k > 0. Then using (4.2.1}, it follows that

Lgr}k_'_l h,(Zo) S Lg nk+1+1 h(zﬁ)
= L z
Q“ Jrop ok .§k+,+1 ( U)
< Ly h)
™
~ Ly, )

where £ = mp_12,, %5 3‘3’“““ Therefore, the claim is verified for all ¥ > 0, and the

lemma is proved. [

Lemma 4.2.2. Let X = {xg,%1,....Zm} ond c,d € R™{(X)) such that || < d.
Then for any fized £ € X* 1t follows that |£oc| < £&d.

Proof: Let & = zp° and & = zffm, x" - -z, 25° for k > 0, where 1 < i, < m.

The proof is by induction on k. For & = 0 the claim is trivial since
&ooc = 143°0c = a5 = x5°6d = £yod.
Assume now that [(£,6¢, )] < (&0d, 1) up to some fixed k > 0, and observe

Ek+10C = 'T"U T¢k+1 (‘gkof) + g (C‘k+l e (Ekéc)) :

Therefore,
(Eenben) = (€3 0, (650, n) + (Cr o (6680), 70 V)
= (&de.al, a5 ™ V() + Z 3 (s @) (&S, )
= e,

(O““ 8,7, (“k+1+1)(n))
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In which case,

[(§k+15f‘ 7}*)!

< ‘(gkoc $¢k+] (”k+l)(n )' + Z Z (Copprs O |(£kOC,, 3

=0 acx:
pexn-t

(muﬁ 1_(“*‘l+1)(n))
< (gkod,rw S ki) ) Z > (dy,,,a)(&dd, 5) (amﬁ r'(””“*”(n))

= acX?
Acxn-—t

= (‘fk—l—l 6d} T}):

where n = |:r5m’°“+l)(’q)1 > 0. Thus, the inequality holds for all & > 0, and the

lemma, is proved. [

Lemma 4.2.3. Let X = {zq,21,...,Zn}. Suppose ¢,¢ € RY{{X)) have growth
constants K., M, > 0, and specifically each component of ¢ 1s ch'»ﬂ"l|n|!, n € X"
If e, € R™[[Xo]] satisfy, respectwely, e = cde and € = TO€ then |e| < &, ¢ =
1,2,....m.

Proof: Since the mapping d > ¢dd is a contraction, it follows that if e, (k) := (¢**30),,
k > 1 then e, = limg_ e, {k). Likewise, one can define a sequence €,(k} using
¢. It will first be shown by induction that |e, (k)| < &(k), & > 1. Observe that
e(1) = e (comn and &(1) = 3, cx. KM n|ln. Therefore, |e,(1)] < &(1).
Now assume the claim holds up to some fixed & > 1. Then, using Lemma 3.3.1, for
any £ € X*

ek +1),6)] = [((cBe(k))o )] = | D _ (e m) (nde(k), £)

< > el Hndelk), &)
< 3 KMyl (ne(k), €)
= (&(k+1),¢)

Thus,
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and the initial claim is established. Next, by a property of the limit supremum,

lim sup (e(k), §)| < liirfup(éa(k),é)-

Since each sequence converges, it follows that |e,| <§&,. [ |

Finally, the following distributive property concerning the modified composition
product will be important in the work that follows. It is the counterpart of the

distributive property for the (regular) composition product [19)].

Lemma 4.2.4. Let X = {xg,x1,...,Tm}. The modified composition product 15 dis-
tributive to the left over the shuffle product, that is,

{cwd)de = (cde) i (dée), c,d,ec R™{{X}).

Proof: Since the shuffle product is defined componentwise, and the modified com-
position product is linear in its lett argument, it is sufficient 10 assume m = 1 and
show that
(nwg)de = (nde}ru(£oe), n e X

Let & = |»| + |4|]. The claim is trivially true when at least one of the words is empty.
Thus, the identity is true for £k = 0 and k = 1. Assuine it is true up to some fixed
k> 0. Let n = a0 and £ = z,£ such that k + 1 = |n| + |£|. First consider the case
when 2,7 # 0. Then

(mwg)de = [m(n wg) + z,(nug))se

= 27 w8)lde + [z,(nwE)]5e

= &[(7' wE)be] + (e, w[(n wE)del) + z,f(n . £)e] +
zo(e; 1w [(nw €')de])

= z,[(7/5e) w (£8e)] + zole, w (7/5e) w. (£3e)] +
z;((nde) 1 (§'3e)] + Tole; . (nde) u (E'5e)]

= z,[(7'5e) w [, (£'5e) + zole; v (€'3€))]] +
Zole, wi (1'0e) w [2,(§'3€) + zole; wi (€ e))]]
z,[[x,(n'0e) + xo(e, w (17'5€))] i (€'5e)] +
Tole, w [2.(1y/5e) + zole, wu ('5e))] w (£e)]

= &[(7'de) wz,(§'3e)] + z[(n'0e) v zole; w (E'3e))] +

Tole . (n'3€) wiz, (£'8€)] +
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zole, . (n'8e) 1 wole; 11 (€'8€))] + 7z, (5] i (£75€)] +
Ty [zole, w (n'3e)) w (§'3e)] + zale; w (/5] w (£3€)] +
o€, w zo(e, w (n'Se)) w (§'5¢)]

= [z(n'Se)] w [z, (£'3e)] + [ ('Se)] i [wole; i (§70¢€))] +
[zo(e. v (n'3€))] [z, (73e)] +
[7a(e, o (n'3€))] [0 (e, o (§5¢))]

= [z.(n'5e) + zole. o (0/5€))] w [7,(§'3e) + wole; + (£'3e))]

= (nde) u{&de).

Thus, the identity holds for all ,£ € X*. The cases when ¢ # 0,j =0andi=j =0,

can be proved in a similar manner using the identity (zg7n)6e = zo(n5e). Therefore,

the lemma is proved. [

Proof of Theorem 4.2.1:
Assume € is the solution of € = ¢62. Since all the components of & are identical, the

focus will be on €,. Observe

oo e LT e S L) Py
- —~ , X LypOE
& =(ce) = » KM Y K o~ m...m%
=0 . Wm0 70' ?f'm"
rpt  —rm=k

=

B m m wk
M, (3:9 + Z To€, + Z xﬁ)}
| =1 =1

[ ki) wk
K. | M, (:;:0 + mrgé; + z :5%)} .

=1

Mz 1M

-
I
o

Shuffling both sides of this equation by M. (zo + maoe; + Y-, z,) yields

m oc m wi k—1
€1 M, (370 + mITe€ + Z :1:1) = Z K, {Mc (arg + mxe€ + Za:%)] )
k=0

=1 =1

Adding K, to both sides gives

=1

€1 =K.+ & wM, (:r,g—i-m:roé]—i-Zm%) )

Therefore,

Fg [u] = K.+ M. Fy, [ul (EIU fu] + mEy e [u] + zm: E,, [u]) .

1=1
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Set 1 = F,, [u] and note that F;, [u] # 0 since y1{0) = K. # 0. Then it follows that

t m oo
1 (t) = K. + M (1) (t + m/ y1(7)dr + Z / w4, (7) dT) :
0 = Jo

or equivalently,

=

K.

=1

T
i = (z2 +md+ 22 ut) . 2(0) = K, (4.2.2)

(4.2.3)

N

M o=

Therefore, by Lemma 4.2.1, {&,n) < {él,xg’l), n € X*. But (6,2} <

K Aa{K)M.)"n! by Theorem 4.1.1. Using Lemma 4.2.3, |e,)f < &, i = 1,2,...,m.
Hence, |{e,, n)| < K.(a(&)M)M|n|!, n € X*. From Theorem 4.1.2 and Exam-
ple 4.1.1,  is the series for which each component of the corresponding feedback
generating series € achieves exactly the growth rate K, (a(K,)M.)"|n|!. Thus, no

smaller geometric growth constant is possible, and the theorem is proved. [ ]

The following corollary addresses a question that was left unresolved in [19].

Corollary 4.2.1. Let ¢ € RY.({X)). Then the generating seres for the unity feed-

back connection, namely the series e satisfying e = cde, s locally convergent.

The final theoremn in this section is useful for convergence analysis of feedback systems

having analytic inputs.

Theorem 4.2.2. Let ¢ € RP-((X)) with growth constants K., M, > 0, and assume
e satisfies e = cde. If ¢y € RY[[Xo]] with growth constents K. , M., > O then

Cy = €0 ¢, salisfies
k k X
l{cy, zg)| < Ke, M k!, k20

for some K., >0 and

M, = Me.
a LAY o~ Wlny, ’
L= mEW (e o (i) )|

Thus, the wterval of convergence for the oulput y = F, [u] w5 at least us large as

T == l/jllflrcy.

Proof: The theorem is an immediate consequence of Theorem 4.2.1 and Corollary
3.3.1. |
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Fig. 11: Output responses of the unity feedback system to analytic inputs in Examplc
4.2.1

Example 4.2.1. Let ¢ = }_, . KCJMJWIM!H and & = &oé. The corresponding
feedback system has the state space realization {4.2.2)-(4.2.3}). By Theorem 4.2.1,
W By Thecrem 4.2.2,
any finite escape time for an output corresponding to an analytic input with growth

constants K., , M., must be at least as large as T = 1/M,. . A MATLAB generated

K

the finite escape time of the zero-input response is .. =

solution of this system is shown in Figure 11 when K. = 4 and M, = 2. As predicted,
toge = W = 0.0537 when u = 0. When K, = M, = 1 it follows that T = 0.0267
as also shown in the figure. The output corresponding to the input 2 = 1/(1 —£) has

tese = 0.0472 > T as expected. For cornparison, the # = —1 response is also shown.

a

4,2.2 Global Convergence

A parallel analysis is done next for the unity feedback case, where the compo-
nent system has a globally convergent generating series. The main theorem below

describes the radius of convergence.

Theorem 4.2.3. Let X = {xg,21,...,Zm} and ¢ € RE({X}) with growth constants



K, M. >0 IfeeR™{X)) satisfies € = cd¢ then
(.| € Ke(v (KM L, n € X,

for some K, > 0, where .

YKe) = (1 1mkK.)
Furthermore, no geometric growth constant smaller than vy(K. )M, can satisfy the
mequality above, and thus the radius of convergence 18
1
(1+ mpy(Ke) M,

The following lemmas are essential in proving the main theorem above.

Lemma 4.2.5. Let X = {zg,21,...,%m}. The Fhess operator F, : v — y having

the state space representation

T
z = /\(z—i-ng—i-zz:uz), 2(0} = zq,

=1
¥y = =
where X, zp € RY, hus a generating series e € R{{X)) whose coefficients satisfy the

nequality
0<(en) < (e,xl?') , nE€X"

Proof: First observe that for the vector ficlds go{z) = Az + m2?) and g,(2) = Az,
the Lie derivatives of h(z) = z consist of products of polynomials with non-negative

coefficients. Therefore,
0 < (c:""f) = Lgnh(z(l): 7 € X*'

For any &k > 0, let ng = =%z, 25" - - - £, 25". Then the Lie derivative corresponding

H
to the word nmpzy*' ™ is

Lg h = L, h

# +1 n +1L9'
$0k+1 xokﬂ 3

e
o d
= ng;"‘“ [/\(z + 'm,zz)E;Lgnk h}
4

d
= Lo [AZEz—Lgnkh} Lo [,\mzzdz Ly, h]

d
2
= Ly nyy, quk:‘k h+ Ly npir [Amz - Lo, h}
o] O

d
2
= Ly, b+ LQI;H] [/\mz P gnkh} :



When evaluated at 2{0) = 2z,

L-';' _"k+1+1h(zn) = L-‘?nk.nh(zo)—kl"ﬂynkﬂ Aﬂ.Isz_lngnkh(zﬂ)
E Ty =0

Clearly, the second term on the right-hand side above also consists of the products of

polynomials with non-negative coefficients. Thus, it is strictly positive, and therefore,

L

L

}L(Z.D) << Lg S .'lL(ZU), k> 0. (424)
ik T

This inequality is used to complete the proof of the lemma  Specifically, it will be
shown by induction on k& that

L, hiz) <L

ety 91 t[)nk i

h(Zg), k 2 U

The claim is trivially true when & = 0. Now, assume it is true up to some fixed
k > 0. Then using (4.2.4}, it follows that

L'E)'?k-}lh(zo) S L.g”krnk+l+1h(zo)
au
= Lq ) h(Z[])
! _ I‘kzgkzux4.1+l
< L hiz
= le]{kt ( 0)
= L h{z
gr|ﬂk+1| ( D)’
a
where £ 1= r;k_lx?_k:c’oz’*xgk“ﬂ. Therefore, the claim is verified for all & > 0, and the
lemma is proved. a

Lemma 4.2.6. Let X = {zg,21,...,Zm). Suppose ¢,& € RE{{X)} have growth
constants K., M, > 0, and specifically each component of € 15 KCMcl”l, n & X"
If e,é¢ € R™[[Xo]] satisfy, respectively, e = cBe and € = 3¢ then le| < &, i =

1,2,...,m.
Proof: The proof is perfectly analogous to its local counterpart, Lemma 4.2.3, -

Proof of Theorem 4.2.3:

Assume € is the solution of € = é€. As in the local case, there is no loss of generality
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in considering the single component e;. Observe

E| -

o -
K MF T " (x,08) 2T
= E R
k=0 U g amze O Tm:

gl trm=k

(M. (zo + 2111 Zo€ + Z:z] 7)) " i

[]8

= K,
€ 1
— k!
[ — m Lk
(M. (zo + maolr + D, La))
= K. Z A ? :
k=0
Therefore, (€,,%) = K, and
1 (M, (zg + maoey + X7, 2,)) P A
3301((:31) = KCZ (k— 15: 1 Ll_hMc(]_—{—TnBl)
k=1
= & _“Mc(]_ + '.-‘RF-J]).
In which case,
Tyt (E) = M, (1 +mé1)we. (4.2.5)
After applying the left-shift operation with respect to z, on &, wherei =1,2,...,m,

it follows that

. K k(M. ) R =
z; (&) = Z Ml ;;:c *8)) w Mzt (:1?0 + mxpe; + ng
k=0 ’

=1

- K. .Mc(&':g —+ xtaé) 1Lk
I )

= LI ﬁ/if(-
k=0 k
= M. (4.2.6)
If z = F3,[u] then {4.2.5) and (4.2.6) vield
Foreplu] = Mez(1 +mz) (4.2.7}
Ftlu] = M.z (4.2.8)
Therefore,
d TrL

aFél [u] = FIEI(El)[u] + Z u""F”’;]{ﬁ)[u]'
=1

From (4.2.7) and (4.2.8), the following state space rcalization is obtained.

3 = ﬁfc(z%—mz?—kzzm), 2(0) = K,

=1

y = z
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Lemma 4.2.5 gives (€;,77) < (él,mg’?l)} n € X* But (&,2)) < K (v(K)M)*n!
by Theorem 4.1.3. Using Lemma 4.2.6, one has |ef < & Hence, |(e,5)] <
K (v{K)M)"5)', 5 € X*. From Theorem 4.1.4 and Example 4.1.4, ¢ is the
series for which the corresponding coefficients, (€,zf), achieve exactly the growth
rate Ko{v(K.)M.)™|n|\. Thus, no smaller geometric growth constant is possible, and

the theorem is proved. [

4.3 SUMMARY

A complete analysis of the radius of convergence of the unity feedback connection
of an analytic nonlinear input-cutput system represented as a Iliess operator has
been presented. First, the self-excited case was considered. If the component system
is locally convergent, then the radius of convergence is finite and can be computed
in terms of the Lambert W-function. Unlike the cascade connection, even if the
component system is globally convergent, the radius of convergence of the overall
feedback system is still finite. An explicit formula was derived for it. Surprisingly,
the radius of convergence of the unity feedback systems with a non-zero input was
found to be identical to that of the self-excited connection in both the local and global
cases. In the process of computing the radii of convergence, it is shown definitively

that local convergence is preserved under unity feedback.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

This dissertation described the radius of convergence for the four fundamental in-
terconnections of two convergent Fliess operators, specifically, the parallel, product,
cascade and unity feedback connections. For cither locally convergent or globally
convergent subsystems, the radius of convergence for the composite system was comn-
puted explicitly. The results are summarized in Table 5. In the process, it was also
shown that the unity feedback connection preserves local convergence, which was an
open problem. A number of specific examples for which the radius of convergence is
achieved were provided. It was found that the Larnbert-W function plays a central
role in computing the radii of convergence for the composition and feedback connec-
tions. This suggests a direct connection to the combinatorics of rooted nonplanar
labeled trees [4,12]. That aspect of the problem was not pursucd in this disser-
tation. However, future research could focus on a more fundamental combinatoric
interpretation of the composition and feedback products of formal power series. This
may give deeper insight into the analysis presented here and perhaps simplify some
of the arguments used. In addition, one could continue to investigate the radius of
convergence for other types of system interconnections. For example, the non-unity
feedback system and interconnections involving component systems which have a
wixture of locally convergent and globally convergent generating series. Many of the
basic methods presented in the dissertation should apply to such problems. Finally,
there are many practical engineering applications to which the analysis used here

will be helpful.
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TABLE 5: Radii of convergence for the four elementary system connections

connection e, d € R7((X)) ¢, d € RGo({X))
parallel max{M“;f.fd}(bmJ >
product max{Mc,;Jd}{HmJ >
cascade m {1 - mK,W (m_}z(; CXp (ﬂM:g:)N o

unity feedback

1
‘m {1 —mK, In (1 + mﬂ

1 1
_—Mc(l—-—m) ]Il (1 —+ m—}-(‘_)
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